

Semester - V
Branch: Electronics & Communication Engineering

Sl. N.	Code	Course Title	Lecture	Tutorial	Practical	Credits
1	ECC501	Digital Signal Processing	3	1	0	4
2	ECC502	Digital Communication	2	1	0	3
3	ECC503	Microcontroller & Embedded system	2	1	0	3
4		Professional Elective -I	2	1	0	3
5		Open Elective -I#	2	1	0	3
		Total				16

Laboratory/Sessionals

1	EC501P	DSP Lab	0	0	2	1
2	EC502P	Digital Communication Lab	0	0	2	1
3	EC503P	Microcontroller & Embedded system lab.	0	0	2	1
4	EC504P	Professional Elective -I Lab	0	0	2	1
5	EC505G	General Proficiency/seminar	0	0	2	2
Total Credits						22

to be offered by other department

Code	Professional Elective-I
ECP504	Linear Control System
ECP505	Optoelectronics
ECP506	Electronic Devices

Code	Open Elective-I (Any One)*
EC0507	Communication System
EC0508	Signal & System
EC0509	Digital System Design

* Not for ECE Students

Semester -VI
Branch: Electronics & Communication Engineering

Sl. N.	Code	Course Title	Lecture	Tutorial	Practical	Credits
1	ECC601	Microwave Engineering	3	1	0	4
2	ECC602	VLSI	2	1	0	3
3	ECC603	IoT	2	1	0	3
4		Professional Elective-II	2	1	0	3
5		Open Elective -II [#]	2	1	0	3
		Total				16
Laboratory/Sessionals						
1	EC601P	Microwave Lab	0	0	2	1
2	EC602P	VLSI Lab	0	0	2	1
3	EC603P	IoT Lab	0	0	2	1
4	EC604P	Professional Elective –II Lab	0	0	2	1
5	EC605I	Internship/Tour and training/Industrial training	0	0	2	2
		Total				6
Total Credits						22

to be offered by other department

Code	Professional Elective-II
ECP604	Biomedical signal processing
ECP605	Electronic Measurement & Instrumentation
ECP606	Biosensor

Code	Open Elective-II (Any One)*
ECO607	Digital Signal Processing
ECO608	VLSI
ECO609	Biomedical Electronics

* Not for ECE Students

SEMESTER V

DIGITAL SIGNAL PROCESSING*

Module	Content	No. of Lectures
1	Signals and systems: Basic elements of DSP, concepts of frequency in Analog and Digital Signals, sampling theorem, Discrete time signals, systems analysis of discrete time LTI systems, Z transform, Convolution, Correlation.	6
2	Frequency transformations: Introduction to DFT, Properties of DFT, Circular Convolution, Filtering methods based on DFT, FFT Algorithms, Decimation in time Algorithms, Decimation in frequency Algorithms, Use of FFT in Linear Filtering, DCT, Use and Application of DCT.	10
3	IIR filter design: Structures of IIR, Analog filter design, Discrete time IIR filter from analog filter, IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives (LPF, HPF, BPF, BRF) filter design using frequency translation.	10
4	FIR filter design: Structures of FIR, Linear phase FIR filter, Fourier Series, Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques.	8
5	Finite word length effects in digital filters: Binary fixed point and floating point number representations, Comparison, Quantization noise, truncation and rounding, quantization noise power, input quantization error, coefficient quantization error, limit cycle oscillations-dead band, Overflow error-signal scaling.	8

Text Books:

1. J.G.PROAKIS & D.G.MANOLAKIS, Digital Signal Processing - Principles, algorithms & Applications, PHI, 2000.
2. .B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003
3. A.V. Oppenheim and Ronald W. Schafer, Discrete Time Signal Processing, 2nd Edition, PHI, 2000.
4. S.K.MITRA, Digital Signal Processing – A computer Based Approach, 2nd Edition, MGH, 2001.
5. Multi Rate Systems and Filter Banks – P.P.Vaidyanathan – Pearson Education.
6. Fundamentals of Digital Signal Processing using Matlab – Robert J. Schilling, Sandra L. Harris, Thomson, 2007

List of experiments:

1. Generation of elementary Discrete-Time sequences
2. Linear and Circular convolutions
3. Auto correlation and Cross Correlation
4. Frequency Analysis using DFT
5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation

6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations
7. Implementation of Decimation Process.
8. Implementation of Interpolation Process.
9. Finding Power and (or) Energy of a given signal
10. Design a LPF to remove high frequency noise from a sinusoidal signal.
11. Design a HPF to remove low frequency noise from a sinusoidal signal.
12. Design a BRF to remove 50 Hz noise from a sinusoidal signal.

DIGITAL COMMUNICATION

Module	Course Content	No. of Lecture
1	<p>Introduction: A historical perspective in the development of digital communication, Elements of digital communication system.</p> <p>Source encoding: Pulse code modulation, quantization noise, linear and non-linear quantization, companding. Differential pulse code modulation, delta modulation, adaptive delta modulation, Delta sigma modulation, linear predictive coders.</p>	8
2	<p>Multiplexing: Introduction to different type of multiplexing, Frequency Division & Time Division Multiplexing, Multiplexing hierarchy, synchronous and asynchronous multiplexing, pulse staffing and word staffing.</p> <p>Baseband transmission: Baseband signal receiver, integrate and dump type filter probability of error calculations, optimum filters, coherent reception, matched filter and its transfer function. Probability of error of matched filter. Regenerative repeater, Bit synchronization, In-phase and mid-phase synchronizer. Early late gate synchronizer. Frame synchronization.</p>	8
3	<p>Different type of line coding: UPNRZ, UPRZ, PNRZ, PRZ, Manchester, differential encoding and their spectral characteristic, self synchronization properties of some of the encoded signal.</p> <p>Equalization: Inter symbol interference (ISI), Purpose of equalization, Eye pattern, Nyquist criterion for zero ISI, fixed equalizer. Design of equalizer, Adaptive equalizer, Decision directed equalizer, Adaptive decision directed equalizer, Partial response signaling.</p>	10
4	<p>Digital modulation techniques: BPSK, DPSK, BFSK, MARY-PSK & -FSK, QPSK, MSK principles, QASK, Error calculation.</p> <p>Spread-spectrum modulation: Pseudo-Noise Sequence, A notion of Spread Spectrum, Direct-Sequence Spread- Spectrum with Coherent Binary Phase-Shift Keying, Processing Gain, Probability of Error, Frequency-hop Spread Spectrum, Code-Division Multiple Access.</p>	8
5	<p>Information theory and coding: Concept and measure of information, Entropy, Discrete and continuous messages, Message source, zero memory sources, extension of zero memory source, Markov source and their entropy, Channel with and without memory, Channel capacity, Hartley a law.</p> <p>Properties of code: Uniquely decodable codes, Instantaneous codes, Kraft inequality and Macmillian inequality, Construction of instantaneous codes, Hoffman and Shannon-Fano coding, Error Coding.</p>	6

Text Books:

1. S.Haykin, Digital Communications, John Wiley & Sons, 2009.
2. B.Sklar, Digital Communications, 2 nd Edition, Pearson Education, New Delhi, 2009.
3. John G.Proakis, Digital Communications, 3 rd edition, McGraw Hill, 1995.

List of experiments:

- 1) Pulse Amplitude Modulation using Natural and Flat-Top Sampling.
- 2) Pulse Amplitude Demodulation.
- 3) Pulse Position Modulation and Demodulation.
- 4) Pulse Width Modulation and Demodulation.

- 5) Signal Sampling and reconstruction
- 6) Amplitude modulation and demodulation
- 7) Frequency modulation and demodulation
- 8). Pulse code modulation and demodulation.
- 9). a) Delta modulation b) Adaptive delta Modulation
- 10). BFSK modulation and Demodulation
- 11). BPSK modulation and Demodulation
- 12). TDM and FDM
- 13). Line Coding Schemes

Microcontroller and Embedded System

Sl No	Topics	No of Lectures
1	Introduction to Microcontroller and Embedded Processor. The 8051 Architecture- Hardware- Oscillator and clock-program counter –data pointer-registers-stack and stack pointer-special function registers- -memory organization-program memory-data memory -Input / Output Ports –External memory-counter and timer-serial data Input / output-Interrupts.	09
2	8051 Assembly Language Programming-Structure of Assembly language-Assembling and running an 8051 program- Addressing modes-Accessing memory using various addressing modes- Instruction set- Arithmetic operations and Programs-Logical operations and Programs -Jump and Call instructions and Programs -I /O Port Programs - Single bit instructions and Programs –Timer and counter - and Programs	10
3	8051 Serial Communication -Connection to RS-232- Serial Communication Programming- Interrupts Programming	08
4	Hardware Interfacing: Interfacing with Key Board, LEDs, Seven Segment, Basic concepts of LCD, ADC, DAC, Relays and their interfacing to microcontroller.	08
5	Basic concept of PIC microcontroller –Microcontroller Architecture – PIC16F Family	09

Text books/Reference books:

1. Kenneth J. Ayala, The 8051 microcontroller: architecture, programming and application, Penram International publication.

2. M.A. Mazidi, J.G. Mazidi, R.D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson Second Edition.
3. D. V. Hall. Microprocessors and Interfacing, TMH. Second Edition 2006.

List of experiments:

1. Write a simple programs for arithmetic operations – addition, subtraction, multiplication and division of 16 or 32 – bit numbers
2. Flashing of LEDS using Shift Register
3. Interfacing ADC
4. Interfacing DAC
5. Interfacing 7-Segment LED.
6. Interfacing of Analog Key pad.
7. Interrupt using on board push button
8. Interfacing real time clock.
9. Interfacing stepper motor.
10. Interfacing temperature sensor.
11. Interfacing Bluetooth module.
12. Interfacing Real Time Clock
13. Interfacing of micro SD Card.
14. Interfacing Wi-Fi Module

LINEAR CONTROL SYSTEM		
Module	Course Content	No. of Lecture
1	INTRODUCTION: Concepts of Control Systems- Open Loop and closed loop control systems and their differences, Different examples of control systems- Classification of control systems, Feed-Back Characteristics, Effects of feedback, Mathematical models, Differential equations, Impulse Response and transfer functions.	7
2	TRANSFER FUNCTION REPRESENTATION: Block diagram representation of systems considering electrical systems as examples -Block diagram algebra Representation by Signal flow graph-Reduction using mason's gain formula.	6
3	TIME RESPONSE ANALYSIS: Standard test signals - Time response of first order systems –Characteristic Equation of Feedback control systems, Transient response of second order systems- Time domain specifications–Steady state response–Steady state errors and error constants–Effects of proportional	10

	derivative, proportional integral systems. STABILITY ANALYSIS IN S-DOMAIN: The concept of stability–Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability.	
4	ROOT LOCUS TECHNIQUE: The root locus concept - construction of root loci-effects of adding poles and zeros to $G(s)$ $H(s)$ on the root loci. FREQUENCY RESPONSE ANALYSIS: Introduction, Frequency domain specifications-Bode diagrams Determination of Frequency domain specifications and Phase margin and Gain margin Stability Analysis from Bode Plots. Polar Plots, Nyquist Plots Stability Analysis. Compensation techniques – Lag, Lead, and Lead-Lag Controllers design in frequency Domain, PID Controllers.	10
5	State Space Analysis of Continuous Systems: Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and it's Properties – Concepts of Controllability and Observability.	6

Text Books/Reference books:

1. Control Systems Theory and Applications - S. K. Bhattacharya, Pearson.
2. B.C. Kuo, Automatic Control Systems, 7th Edition, Prentice Hall of India, 2009.
3. I.J. Nagarath and M. Gopal: Control Systems Engineering, 2nd Edition, New Age Pub. Co. 2008.
4. Modern Control System with Advanced topics- S. K. Bharadwaj and S. K. Nagar, New Age Publication.
5. Control Systems - N. C. Jagan, BS Publications.
6. Control Systems - A. Ananad Kumar, PHI.
7. Control Systems - N. K. Sinha, New Age International (P) Limited Publishers

List of experiments:

1. To Study the Response of First Order System
2. To Study the Transfer Function of a Feedback System
3. To Study the Root Locus Response of a 2nd Order system
4. To Study the Response of Nyquist Plot for a 2nd Order system
5. To Study the Response Bode Plot of 3rd Order system
6. To Study the Response of P, PI, PD and PID Controller
7. To Study the Response of Lead, Lag, and Lead-lag Compensator.
8. To study the role of feedback in DC speed control systems.
9. To study the role of feedback in DC position control systems.
10. To study digital control of a simulated system using an 8-bit microcomputer.

OPTOELECTRONICS		
Module	Course Content	No. of Lecture
1	INTRODUCTION: Difference between electronic, optoelectronic and photonic devices, Electrical and Optical Bandwidth, Wave nature of light, Polarization, Interference, Diffraction, Absorption, Light Source	7
2	ELEMENTS OF LIGHT AND SOLID STATE PHYSICS: Basic principles of light propagation. Band structure of metals and semiconductors ,Semiconductors - band diagrams, direct and indirect band-gap, degenerate and non-degenerate semiconductors, intrinsic and extrinsic semiconductors.	8
3	OPTICAL SOURCES : LED Device structure, materials and characteristics. The Semiconductor Laser: Basic structure, theory and device characteristics	10
4	Semiconductor Optical Amplifiers(SOA) characteristics and some applications, EDFA.	10
5	OPTICAL DETECTION DEVICES: Types of photo-detectors, Photoconductors, Noise in photo-detection, Photodiodes, PIN diodes and APDs: structure, materials, characteristics, and device performance	8

Text books/Reference books :

1.B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., 2nd Ed. (2007), Ch.16, 17, and 18.

2.P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).

3.J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).

4.G. Keiser, Optical Fiber Communications, McGraw-Hill Inc., 3rd Ed. (2000), Ch.4, 6

List of experiments:

1. Semiconductor Parameter Analyzer / LED current-voltage characteristics.

2.Optical power and spectrum measurements / LED characterization.

3.Electrical probe station / Photodiode responsivity characterization.

4. Laser diode DC characteristics.

5.Multi-sim modelling of circuits with optoelectronic devices.

7 Pulsed (AC) measurements using LEDs, laser diodes, and photodiodes.

8 Circuits for amplifying photodiode signals.

9 Noise and shielding / Circuit construction techniques

10. Fiber optic transceiver modules

		ELECTRONIC DEVICES	
Module	Course Content	No. of Lecture	
1	Crystal Properties and charge Carriers in Semiconductors: Elemental and compound semiconductor materials, crystal lattice structure, Bonding forces and energy bands in solids, charge carriers in semiconductors, carrier concentrations, drift of carriers in electric field	6	
2	Excess Carriers in Semiconductors: Optical absorption, luminescence, carrier life time and photo conductivity, diffusion of carriers	6	
3	Junction Properties: Equilibrium conditions, biased junctions, steady state conditions, reverse bias break down, transient and AC conditions. Metal semiconductor junctions.	8	
4	Transistors: Metal-semiconductor-field-effect-transistors (MESFET), Metal-insulator-semiconductor-field-effect-transistors (MISFET), Metal oxide semiconductor field effect transistor (MOSFET): Construction, Operation and characteristics of above devices. Bipolar junction transistors: Fundamentals of BJT operation, amplification with BJTs.	12	
5	Some special devices: Photodiodes, photo detectors, solar cell, light emitting diodes, semiconductor lasers, light emitting materials. Tunnel Diode: degenerate semiconductors, IMPATT diode; The transferred electron mechanism: The GUNN diode. P-N-P-N diode, semiconductor controlled rectifier (SCR), bilateral devices: DIAC, TRIAC, IGBT.	8	

Text book:

1. Ben.G.Streetman & Sanjan Banerjee Solid State Electronic Devices (5th Edition) PHI Private Ltd, 2003

Reference books:

1. Yannis Tsividis: Operation & Mode line of The MOS Transistor (2nd Edition) Oxford University Press, 1999
2. Nandita Das Gupta &Amitava Das Gupta- Semiconductor Devices Modeling a Technology, PHI, 2004.

List of experiments:

1. Rectifying and Breakdown Characteristics of pn-junctions and point contact diodes
2. Diode Rectifiers: Full wave and Half wave (with and without filters)
3. Silicon Controlled Rectifiers(SCR) characteristics
4. Bipolar Junction Transistor: input and output characteristic (a)common base,(b) common collector, and (c)common emitter configuration
5. CB, CE,CC transistors amplifier
6. ID-VD characteristics of junction field effect transistors
7. Uni-junction Transistor(UJT) and relaxation oscillator

8. Study of basic properties of operational amplifier: voltage follower, inverting and non-inverting amplifiers
9. Differentiator, Integrator, Phase shift oscillator by using operational Amplifier
10. Frequency response of RC-coupled amplifiers by using operational Amplifier
11. Voltage variable Resistance
12. Astable- Multivibrator using BJT

COMMUNICATION SYSTEM		
Module	Course content	No. of Lectures
1	Signals and Signal Analysis: Periodic and non-periodic signals, Composite signals, Signal analysis, Time and frequency domain representation. Introduction to Data and signal fundamentals, Analog and digital signals.	8
2	Analog Transmission: Concepts of carrier signal, noise, modulating signal and modulated signal; Amplitude modulation – double sideband suppressed carrier, double sideband transmitted carrier, single sideband; Frequency modulation – Narrowband FM and wideband FM; Digital to analog conversion – Amplitude shift keying, Frequency shift keying, Phase shift keying, Quadrature amplitude modulation, Performance.	8
3	Digital Transmission: Problems with digital transmission, Different line coding schemes, Block coding schemes, Scrambling techniques; Analog to digital conversion Sampling techniques, Sampling theorem, Pulse amplitude modulation, Pulse code modulation, Differential pulse code modulation, Delta modulation (along with advantages and disadvantages of each technique), Transmission modes (serial and parallel).	10
4	Multiplexing and Spreading: Concept of multiplexing, Frequency division multiplexing, Time division multiplexing – Synchronous and Statistical time division multiplexing.	10
5	Error Detection and Correction: Types of errors, Basic concepts of error detection and correction, Redundancy, Hamming distance, Error detection – Simple parity check codes, Two-dimensional parity check, Cyclic redundancy check, Polynomials and cyclic code analysis, Checksum, Error correction – Hamming code.	8

Text Books/Reference books:

1. S. Haykin, Digital Communications, John Wiley & Sons, 2009.
2. B. Sklar, Digital Communications, 2nd Edition, Pearson Education, New Delhi, 2009.
3. John G. Proakis, Digital Communications, 3rd edition, McGraw Hill, 1995.
4. BP Lathi Communication System BS Publication
5. Singh & Sapre, Analog Communication, TMH.

SIGNAL AND SYSTEM

Module	Course Content	No. of Lecture
1	SIGNALS AND SYSTEMS: Continuous Time and Discrete Time signals, Exponential and Sinusoidal Signals, Unit Impulse and Unit Step Functions, Continuous and Discrete Time Systems, basic System Properties. LINEAR TIME INVARIANT SYSTEMS: Discrete Time LTI Systems, Continuous Time LTI Systems, properties of LTI Systems, causal LTI Systems Described by Difference equations.	6
2	FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS: Response of LTI systems to Complex Exponentials, Fourier series Representation of CT periodic Signals, properties of CT Fourier Series, Fourier Series representation of DT periodic Signals, properties of DFS, Fourier series and LTI Systems, Filtering, Examples of CT filters, Examples of DT filters. CONTINUOUS TIME FOURIER TRANSFORM: Representation of a periodic Signals by continuous FT, FT of periodic signals, convolution and multiplication property of continuous FT, systems characterized by Linear Constant Coefficient Differential Equations.	9
3	TIME AND FREQUENCY CHARACTERIZATION OF SIGNALS AND SYSTEMS: Magnitude and phase representation of FT, Magnitude and phase response of LTI systems, Time domain and Frequency domain aspects of ideal and non-ideal filters. DISCRETE TIME FOURIER TRANSFORM (DTFT) and DISCRETE FOURIER TRANSFORM (DFT): Properties of DTFT and DFT, convolution property, multiplication property, Duality, Systems characterized by Linear Constant Coefficient Difference Equations.	9
4	SAMPLING: Sampling theorem, Impulse sampling, sampling with zero order Hold, Reconstruction of signal from its samples using interpolation, Effect of under sampling Z-TRANSFORM: Z-transform, Region of convergence and its properties, Inverse Z transform, properties of ZT, Analysis and characterization of LTI systems using ZT, LTI Systems, function algebra and block diagram representations.	9
5	SIGNAL FLOWGRAPHS: Impulse Response and Transfer function of linear Systems, Block diagrams, Signal flow graphs, Basic properties of SFG, SFG Terms, SFG Algebra, Gain formula, Application of gain formula to block diagrams.	7

Text Books/Reference books:

1. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems Prentice Hall India, 2nd Edition, 2009.

2. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, 4th Edition, PHI, 2007.
3. Robert A. Gable, Richard A. Roberts, Signals & Linear Systems, 3rd Edition, John Wiley, 1995.

	DIGITAL SYSTEM DESIGN
--	------------------------------

Module	Course Content	No. of Lecture
1	<p>INTRODUCTION: Introduction to Number Systems and Boolean Algebra</p> <p>Digital and Analog Basic Concepts, Number Base Conversion - Complement Codes, Binary Arithmetic , Binary codes: BCD, Weighted codes -2421, 8421, gray code - Binary Logic functions, Boolean Algebra, Theorems and Properties of Boolean Algebra.</p> <p>MINIMIZATION OF BOOLEAN FUNCTION: Minimization techniques in digital Logic Canonical forms, Generation of Switching Equations from Truth Table - K-map(Karnaugh map) 2 ,3 and 4 variables, K map terms - Quine Mc-Cluskey minimization technique, Quine Mc-Cluskey using Don't Care Terms - Mixed logic Combinational circuits.</p>	8
2	<p>COMBINATIONAL CIRCUIT DESIGN: Design with basic logic gates, comparators, data selectors, priority encoders, decoders, full adder, serial binary adder, parallel binary adders-ripple-carry adder, carrylook ahead adder; Parallel prefix adders- Carry select Adder, Conditional sum adder, Kogge-stone Adder, Brent-kung adder, Verilog models.</p>	8
3	<p>SEQUENTIAL CIRCUIT DESIGN: Memory elements and their excitation functions SR, JK, T, and D latches and flip-flops, master slave JK flip-flop, edge-triggered flip-flop, synchronous and asynchronous counters, finite-state machine, sequence detector, minimization and transformation of sequential machines, Registers, Verilog models.</p>	10
4	<p>TESTING OF COMBINATIONAL CIRCUITS: Fault models, structural testing; path sensitization Logic families: TTL and CMOS Logic circuits, Transfer characteristics, fan-in, fan-out, noise margin, rise time and fall time analysis, realization of Boolean equations using CMOS logic.</p>	8
5	<p>MEMORY: Types of memories, MOS SRAM cells, DRAM, SDRAM, DDR SDRAM, DDR2 SDRAM, DDR4 SDRAM, organization of a SRAM, Organization of SDRAM, Periphery circuitry of Memory, Flash memory, SD card.</p>	6

Text books:

1. John M Yarbrough,-Digital Logic Applications and Design, Thomson Learning,2001.
2. Donald D. Givone, —Digital Principles and Design, McGraw Hill, 2002.
3. Charles H Roth Jr., Larry L. Kinney —Fundamentals of Logic Design, CengageLearning, 7th Edition.

Reference books:

1. D. P. Kothari and J. S Dhillon, —Digital Circuits and Design, Pearson, 2016,
2. Morris Mano, —Digital Design, Prentice Hall of India, Third Edition.
3. K. A. Navas, —Electronics Lab Manual, Volume I, PHI, 5th Edition, 2015.

SEMESTER VI

MICROWAVE ENGINEERING

Module	Content	No. of Lectures
1	Introduction: RF and microwave spectrum, historical background, application of RF and Microwave Impedance Matching—Unknown impedance measurement using shift in minima technique and impedance matching using single and double stub matching.	8
2	Microwave waveguides and components: Rectangular waveguide and circular waveguide, mode structure, cutoff frequency, wall current, attenuation; microwave cavities – rectangular cavity resonator, Q factor power divider, scattering matrix and transmission matrix, attenuator, phase shifter, directional coupler, Bethe hole coupler, magic tee, hybrid ring, circulator, isolator, Ferrite Devices	10
3	Planar structures: Strip line, microstrip line, coplanar structure Microwave Tubes: Limitations of conventional tubes, Multicavity Klystron, Reflex Klystron, Magnetron, Travelling Wave Tube, Backward Wave Oscillator Semiconductor Microwave Devices – Tunnel diode, Gunn diode and their waveguide mounts	10
4	Avalanche diodes: IMPATT, TRAPATT, Microwave bipolar transistor, heterojunction bipolar transistor. Microwave field effect transistor: JFET, MOSFET, MESFET Applications of microwave: Industrial Applications of microwave.	8
5	Microwave Measurement: VSWR measurement, power measurement, impedance measurement, frequency Measurement Equivalent RF circuit parameters Low pass filter, high pass filter, band pass filter, RF amplifier.	6

Text Books/References books:

1. Golio M, Golio J (2008) The RF and Microwave Handbook. CRC Press.
2. Pozar DM (2005) Microwave Engineering. John Wiley & Sons.
3. Hong JS, Lancaster MJ (2001) Microstrip Filters for RF/Microwave Applications. John Wiley & Sons.

List of experiments:

1. To measure the frequency and wavelength using slotted line section and frequency meter.
2. To measure the Isolation and Insertion loss of Isolator and Circulator.
3. To study E-plane, H-plane and Magic Tee.
4. To measure Coupling Factor, Directivity and Isolation of directional coupler.
5. To measure VSWR and Reflection coefficient of different loads.
6. To study the characteristics of Klystron and Gunn diode.

7. Simulation of Transmission line: Waveguide and Coaxial line.
8. Simulation of directional coupler.
9. Simulation of E-plane and H-plane Tee.
10. Study of micro strip line and LPF using HFSS Software.
11. Study of BPF using HFSS Software.

	VLSI DESIGN
--	--------------------

Module	Content	No. of Lectures
1	Introduction: Review of MOSFET characteristics, scaling and small-geometry effects, and MOSFET capacitances. MOS resistor, MOS current source, current mirror circuits. MOS voltage source, linear voltage and current converters.	6
2	CMOS operational amplifier (OPAMP) design: Differential amplifier, level shifter, source follower, output stage voltage and power amplifiers. Cascode OP-AMP. Compensation techniques. Analog Filters: Switched capacitor (SC) fundamentals, first order SC circuits, second-order SC circuits and cascade design. Analog to digital and digital to analog converters, speed of conversion and over sampling issues. VLSI Interconnects: Distributed RC model, transmission line model. Future inter connect technologies.	14
3	Digital VLSI Circuit Design: MOS inverters, CMOS inverter, state characteristics, switching characteristics, power dissipation issues. CMOS logic gates: NAND, NOR, XOR, CMOS logic design of half and full adders. CMOS transmission gates, pseudo-nMOS, domino logic gates.	9
4	Sequential MOS Logic Circuits: The SR latch circuit, clocked latch and flip-flop, CMOS D-latch and edge-triggered circuits, Schmitt trigger circuit, Comparator. Dynamic Logic Circuits: Pass transistor logic, synchronous dynamic circuit techniques.	8
5	Semiconductor Memories: ROM circuits, SRAM circuits, DRAM circuits, drivers and buffers, Buffer scaling and design issues	5

Text Books/Reference books:

1. Sung-Mo Kang, Yusuf Leblebici Chulwoo kim, Digital Integrated Circuits: Analysis and Design, 4th Edition, McGraw Hill Education, 2016.
2. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2nd Edition, McGraw Hill Education, 2016.
3. Jan M RABAЕY, Digital Integrated Circuits, 2nd Edition, Pearson Education, 2003.
4. Neil H.E. Weste and David Harris, CMOS VLSI Design: A circuits and systems perspective, 4th Edition, Pearson Education, 2015.

List of experiments:

- 1) To study the MOS characteristics and introduction to tanner EDA software tools.
- 2) To design and study the DC characteristics of PMOS and NMOS.
- 3) To design and study the DC characteristics of resistive inverter.
- 4) To design and study the transient and DC characteristics of CMOS inverter.
- 5) To design and study the characteristics of CMOS NAND and NOR gate.
- 6) To design and study the characteristics of CMOS multiplexer.
- 7) To design any Boolean function using transmission gates.
- 8) To design and study the characteristics of CMOS Full adder.
- 9) To design and study the characteristics of CMOS D Flip Flop.
- 10) To design and study the transient characteristics of CMOS XOR/XNOR.
- 11) To design and study the characteristics of Schmitt trigger circuit.

	INTERNET OF THINGS
--	---------------------------

Module	Course Content	No. of Lecture
1	Introduction to IOT: IoT and the connected world, Architecture of IoT, Security issues, Opportunities for IoT. The Web of Things: Linked data, Enterprise data, Importance of security, privacy, and authenticity, Industry standards, Web of Things layer as the driver for IoT systems.	8
2	Lessons from the Internet: Relevance of internet to network of things, network management, security, mobility and longevity.	5
3	Technologies: Wireless protocols, Connectivity options. Data storage and analysis: Managing high rate sensor data, Processing data streams, Data consistency in an intermittently connected or disconnected environment, Identifying outliers and anomalies.	10
4	Use cases: Smart Buildings, Smart health, Home automation, Location tracking.	6
5	Smart Cities: Collection of information including opportunistic sensing, crowd sensing, and adhoc sensing Response of the system including analytics and optimization, distributed action, people as intelligent actuators, the risk for cyber-attacks in centralized and distributed systems	10

Text Books/Reference books:

1. Designing the Internet of Things, by Adrian McEwen, Hakim Cassimally Wiley 2013.
2. Enterprise IoT Naveen Balani Create Space Independent Publishing Platform 2016.

List of experiments:

1. Eclipse IoT Project.
2. Sketch the architecture of IoT Toolkit
3. Demonstrate a smart object API gateway service reference implementation in IoT toolkit.
4. Demonstrate working of an HTTP- to-CoAP semantic mapping proxy in IoT toolkit.
5. Demonstrate gateway-as-a-service deployment in IoT toolkit.
6. Demonstrate application framework and embedded software agents for IoT toolkit.
7. demonstrate working of Raspberry Pi.
9. Connect Raspberry Pi with your existing system components.
10. Give overview of Zetta.

BIOMEDICAL SIGNAL PROCESSING

Module	Content	No. of Lectures
1	<p>Introduction to Biomedical Signals: The nature of Biomedical Signals, Examples of Biomedical Signals, Objectives and difficulties in Biomedical analysis.</p> <p>Electrocardiography: Basic electrocardiography, ECG lead systems, ECG signal characteristics.</p> <p>Signal Conversion :Simple signal conversion systems, Conversion requirements for biomedical signals, Signal conversion circuits</p>	8
2	<p>Signal Averaging: Basics of signal averaging, signal averaging as a digital filter, a typical averager, software for signal averaging, limitations of signal averaging.</p> <p>Adaptive Noise Cancelling: Principal noise canceller model, 60-Hz adaptive cancelling using a sine wave model, other applications of adaptive filtering</p>	8
3	<p>Data Compression Techniques: Turning point algorithm, AZTEC algorithm, Fan algorithm, Huffman coding, data reduction algorithms</p> <p>The Fourier transform, Correlation, Convolution, Power spectrum estimation, Frequency domain analysis of the ECG</p>	8
4	<p>Cardiological signal processing: Basic Electrocardiography, ECG data acquisition, ECG lead system, ECG signal characteristics (parameters and their estimation), Analog filters, ECG amplifier, and QRS detector, Power spectrum of the ECG, Bandpass filtering techniques, Differentiation techniques, Template matching techniques, A QRS detection algorithm, Realtime ECG processing algorithm, ECG interpretation, ST segment analyzer, Portable arrhythmia monitor</p>	8

5	<p>Neurological signal processing: The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics (EEG rhythms, waves, and transients), Correlation.</p> <p>Analysis of EEG channels: Detection of EEG rhythms, Template matching for EEG, spike and wave detection</p>	8
---	---	---

Text / Reference Books:

1. D.C.Reddy, “Biomedical Signal Processing – Principles and Techniques”, TMH.
2. Wills J. Tompkins, “ Biomedical digital signal processing”, Prentice Hall of India Pvt. Ltd.
3. Digital biosignal processing. Weitkunat R, Elsevier.
4. Biomedical signal processing. Akay M. Academic Press.
5. Computer technique in medicine. Macfarlane P.W. Butter Worth
6. Biomedical signal processing. Vol-I, Time frequency analysis. Cohen A. CRC press.

List of Experiments:

- 1.Computation of convolution and correlation sequences
2. Analog and digital signal conditioning
3. Signal averaging improvement in the SNR using coherent averaging
4. Signal averaging improvement in the SNR using incoherent averaging
5. Exponential averaging
6. Data polishing: mean and trend removal
7. PSD estimation
- 8.EEG processing and analysis
9. PCG processing and analysis
10. Electronic BP measurement and calibration
11. Spectral analysis of bio-potential signal.

	Electronics Measurement and Instrumentation
--	--

Module	Topics	No. of Lectures
1	<p>Measurement Errors and Standards: Definitions, Accuracy and Precision, Significant Figures, Types of Error, Statistical Analysis, Probability of Errors, Limiting Errors, Time and Frequency Standards, Electrical Standards.</p> <p>Bridge Measurements: Wheatstone Bridge, Kelvin Bridge, AC Bridge and their Applications, Maxwell Bridge, Hay's Bridge, Unbalance Conditions, Wein Bridge.</p>	8

Module	Topics	No. of Lectures
	Anderson's Bridge, De Sauty's Bridge, Schering Bridge.	
2	<p>Electronics Instrument For Measuring Basic Parameters: True RMS Responding Voltmeter, Digital Frequency Meter, Circuit for Measurement of Frequency, High Frequency Measurements, Period Measurement, Ratio and Multiple Ratio Measurements, Time Interval Measurements, Vector Impedance Meter.</p> <p>Cathode Ray Oscilloscope: Introduction, Oscilloscope Block Diagram, Cathode Ray Tube, Delay Line, Multiple Trace, Oscilloscope Scope and Transducers, Oscilloscope Techniques, Digital Storage Oscilloscope.</p>	11
3	<p>Instrument for Generation and Analysis of Waveforms: Introduction, The Sine Wave Generator, Frequency Synthesized Signal Generator, Frequency Divider Generator, Signal Generator Modulation, Sweep Frequency Generator, Pulse and Square Wave Generator, Function Generator, Wave Analyzers, Harmonic Distortion Analyzer, Spectrum Analyzer.</p>	6
4	<p>Transducers: Electrical Transducers Selection and Considerations, Resistive, Strain Gauges, Temperature Transducers: Platinum Resistance Type, Thermistor, Thermocouples, Inductive, LVDT, Capacitive, Load Cell, Piezoelectric, Photoelectric Transducers.</p> <p>Signal Converters: I to P and P to I Converter, Temperature to Voltage Converter, Conversion To Frequency, Period, or Time Duration, Measurement of Phase Difference Using X-OR and SR Flip-Flop Method, Measurement of Active And Reactive Power of Supply Line, Locking Amplifiers, Variable Oscillators, Direct Sensor- Microcontroller Interfacing.</p>	9
5	<p>Isolation Techniques: Transformer Isolation, Optical Isolation, Digital Techniques For Optical Isolation, Hall-Effect Principle And Measurement Of Displacement, Current And Power Using Hall Sensors, Amplifications Of Low Level Signals, Guarding, Shielding.</p> <p>Data Acquisition And Conversion: Analog Signal Processing, Sample And Hold Operation, S/H Circuits Using Op-Amps, Introduction To Data Acquisition System, Various DAS Configurations, Single Channel DAS, Multi-Channel DAS, IC</p>	12

Module	Topics	No. of Lectures
	Based DAS, Data Acquisition, Data Acquisition in PLC.	

Text Books:

1. W.D. Coopers and Helfrick, Modern Electronic instrumentation and Measurements Techniques, Prentice Hall of India Pvt. Ltd,
2. A. K. Sawhney: A course in Electrical & Electronic Measurements and Instrumentation, Edition 11, Dhanpat Rai and Sons,
3. E.W. Gowlding and F.C.Widdis, Electrical Measurements and Measuring Instruments 5/e, Wheeler Publications.

Reference Books:

1. U. A. Bakshi, A. V. Bakshi: Electrical Measurements and Instrumentation, Technical Publications.
2. J. B. Gupta: A course in Electrical and Electronic Measurements and Instrumentation, 13/E, Kataria and Sons.

List of experiments:

1. To find the value of unknown resistor using Wheatstone bridge.
2. To find the value of unknown capacitance and inductance using Maxwell's bridge.
3. To find the value of unknown capacitance using Wein's series and parallel bridge.
4. To extend the range of given voltmeter and ammeter.
5. Measurement of frequency using Lissajous method.
6. To study and verify characteristic of variable resistor transducer (strain gauge).
7. To study and verify characteristic of LVDT
8. To study and verify characteristic of Thermocouple/RTD.
9. To study the front panel controls of storage CRO.
10. To analyze analog and digital multi meter for various measurements.
11. To verify the performance characteristics of compensated attenuator.
12. To demonstrate the functionality of function generator and its use as a test and measurement equipment.
13. Measurement of LCRQ meter.
14. To demonstrate the functionality of IC tester and test various ICs.

	BIOSENSORS
--	-------------------

Module	Course Content	No. of Lecture
1	General principles: A historical perspective, Signal transduction, Physico-chemical and biological transducers, Sensor types and technologies, Definitions and Concepts Terminology and working vocabulary, Main technical definitions, calibration, selectivity, sensitivity, reproducibility, detection limits, response time.	8
2	Physico-chemical transducers: Electrochemical transducers (amperometric, potentiometric, conductimetric), optical transducers (absorption, fluorescence, SPR), Thermal transducers, piezoelectric transducers.	5

3	Bio recognition systems: Enzymes: Oligonucleotides and Nucleic Acids, Lipids (Langmuir-Blodgett bi-layers, Phospholipids, Liposome's), Membrane receptors and transporters, Tissue and organelles (animal and plant tissue), Cell culture, Immuno receptors, Chemoreceptor's, Limitations & problems, Immobilization of biomolecules.	10
4	Biosensor Engineering: Methods for biosensors fabrication, self-assembled monolayers, screen printing, photolithography, micro-contact printing, MEMS, Engineering concepts for mass production.	8
5	Application of modern sensor technologies: Clinical chemistry, Test-strips for glucose monitoring, Urea determination; Implantable sensors for long-term monitoring, Environmental monitoring, Technological process control, Food quality control, Forensic science benefits, Problems & limitations.	8

Text Books:

1. Donald G. Buerk, Biosensors: Theory and Applications, First Edition, CRC Press, 2009.
2. Alice Cunningham, Introduction to Bioanalytical Sensors, John Wiley& Sons, 1998.
3. Brian R. Eggins, Chemical Sensors and Biosensors, John Wiley& Sons, 2003.
4. R. S. Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw Hill.
5. S.C. Cobbold, "Transducers for Biomedical Instruments", Prentice Hall.
6. Brown & Gann, "Engineering Principles in Physiology Vol. I", Academic Press.
7. Carr & Brown, "Introduction to Biomedical Equipment Technology" Pearson Education, Asia.
8. Rao & Guha, "Principles of Medical Electronics & Biomedical Instrumentation", University Press, India.

Reference books:

1. Iberall & Guyton, "Regulation & Control in Physiological System", Instruments Society USA.
2. A.V.S. De Renck, "Touch Heat & Pain", Churchill Ltd. London.
3. Harry Thomas, "Handbook of Bio medical Instrumentation", Reston, Virginia.
4. D. L. Wise, "Applied Bio Sensors", Butterworth, London.

List of experiments:

1. To study about various static and dynamic characteristics of Transducers.
2. To study about Electrochemical & optical Transduction.
3. Introduction to various types of Biosensors.
4. To study about different types of Force Measurement Techniques.
5. To study about different types of Torque Measurement Techniques.
6. Introduction to BioMEMs
7. To study about various fabrication techniques of BioMEMs.
8. Demonstration of Biosensor Microchip.
9. Demonstration of BioMEMS: Revolution in drug delivery and analytical techniques
10. Demonstration of MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications
11. Demonstration of POLYMER BioMEMS for Implantable Drug delivery

DIGITAL SIGNAL PROCESSING

Module	Content	No. of Lectures
1	Signals and systems: Basic elements of DSP, concepts of frequency in Analog and Digital Signals, sampling theorem, Discrete time signals, systems analysis of discrete time LTI systems, Z transform, Convolution, Correlation.	6
2	Frequency transformations: Introduction to DFT, Properties of DFT, Circular Convolution, Filtering methods based on DFT, FFT Algorithms, Decimation in time Algorithms, Decimation in frequency Algorithms, Use of FFT in Linear Filtering, DCT, Use and Application of DCT.	10
3	IIR filter design: Structures of IIR, Analog filter design, Discrete time IIR filter from analog filter, IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives (LPF, HPF, BPF, BRF) filter design using frequency translation.	10
4	FIR filter design: Structures of FIR, Linear phase FIR filter, Fourier Series, Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques.	8
5	Finite word length effects in digital filters: Binary fixed point and floating point number representations, Comparison, Quantization noise, truncation and rounding, quantization noise power, input quantization error, coefficient quantization error, limit cycle oscillations-dead band, Overflow error-signal scaling.	8

Text Books/Reference books:

1. J.G.PROAKIS & D.G.MANOLAKIS, Digital Signal Processing - Principles, algorithms & Applications, PHI, 2000.
2. B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003
3. A.V. Oppenheim and Ronald W. Schafer, Discrete Time Signal Processing, 2nd Edition, PHI, 2000.

4. S.K.MITRA, Digital Signal Processing – A computer Based Approach, 2nd Edition, MGH, 2001.
5. Multi Rate Systems and Filter Banks – P.P.Vaidyanathan – Pearson Education.
6. Fundamentals of Digital Signal Processing using Matlab – Robert J. Schilling, Sandra L. Harris, Thomson, 2007.

	VERY LARGE SCALE INTEGRATION
--	-------------------------------------

Module	Content	No. of Lectures
1	System Level Design: System level design-Tools & methodologies for system level design, System level space & modeling languages, SOC block based design & IP assembly, Performance evaluation methods for multiprocessor SOC design.	8
2	Power Management And Synthesizing : System level power management, Processor modeling & design tools, Embedded software modeling & design Using performance metrics to select microprocessor for IC design, Parallelizing High-Level Synthesize, A code transformational approach to High Level Synthesize.	12
3	Micro-Architecture Design and Power Optimization: Micro-architecture design, Cycle accurate system – level modeling, Performance evaluation Micro architectural power estimation optimization, Design planning.	8
4	Software Design Verification: logical verification, Design & Verification languages, Digital simulation, using transactional, level models in an SOC design, Assertion based verification.	8
5	Hardware Design Verification: Hardware acceleration & emulation, Formal property verification, TEST, DFT, ATPG, Analog & mixed signal test.	6

Text Books/Reference books:

1. Louis Scheffer Luciano Lavagno and Grant Martin, “EDA for IC System verification and Testing”, CRC, 2006.
2. Wayone Wolf, “Modern VLSI Design: SOC Design”
3. Prakash Rashnikar, Peter Paterson, Lenna Singh “System-On-A-Chip Verification methodology & Techniques”, Kluwer Academic Publishers.
4. Alberto Sangiovanni Vincentelli, “Surviving the SOC Revolution: A Guide to Platform based Design”, Kluwer Academic Publishers.

BIOMEDICAL ELECTRONICS

Module	Course content	No. of Lectures
1	Basic Medical Instrumentation System: Static and dynamic characteristics of medical instruments, Bio-signals and characteristics. Problems encountered with measurements from human beings. Bio-Potential Electrodes and Physiological Transducers: Electrode potential, Electrode equivalent circuit, Types of Electrodes-Surface Electrodes, Needle Electrodes, Micro Electrodes. Pressure transducers, Transducers for body temperature measurement.	14
2	Electrical Conduction system of the heart, Block diagram Of Electrocardiograph, ECG leads, Einthoven triangle, ECG amplifier, EEG 10-20 lead system, Specifications and Interpretation of ECG, EEG, EMG.	8
3	Blood flow meters: Electromagnetic blood flow meter, Ultrasonic Doppler blood flow meter. Blood pressure measurement-Ultrasonic blood pressure monitoring. Physiological Assist Devices & Therapeutic Equipment: Pacemakers, External & internal, Defibrillators, External & internal, Hemodialysis machine.	10
4	Spirometry, Pnemuotachograph, Ventilators Monitoring Equipment: Arrhythmia Monitor, Foetal Monitor, and Incubator. Medical Imaging Equipment: X-ray generation, X-ray tube, X-ray machine, Computed Tomography (CT), Ultrasound Imaging system .	10
5	Electric shock hazards, Leakage currents, Test instruments for checking safety parameters of biomedical equipments.	8

Text books/Reference books:

1. L.A.Geddes and Wiley, Principles of Biomedical Instrumentation L.E.Baker (2nd Ed.)
2. L.Cromwell, Biomedical Instrumentation and Measurements, Prentice Hall.
3. John G.Webster (Ed.), Medical Instrumentation – Application and Design, 3rd Edition, John Wiley & Sons Inc.
4. Handbook of Biomedical Instrumentation by R. S. Khandpur, Tata McGraw Hill.
5. Introduction to Biomedical Technology by J. J. Karr & J. M. Brown, Pearson Publication.
6. Medical Instrumentation Application and Design by J. G. Webster, Wiley Publication.